
Forms
Collecting Information in a Usable Way

© 2013 R. Scott Granneman 
Last updated 2018-08-27 

You are free to use this work, with certain restrictions.  
For full licensing information, please see the last slide/page.

R. Scott Granneman r Jans Carton

1.4

Notes & URLs for this presentation can be found…

» underneath the link to this slide show on
granneman.com

» at files.granneman.com/presentations/webdev/
Forms.txt

http://files.granneman.com/presentations/webdev/Forms.txt
http://files.granneman.com/presentations/webdev/Forms.txt

Intro

Forms in Daily Use

You use forms all the time

» Search
» Login
» Account creation
» Submit information
» Shopping
» Signing up for mailing lists

How Forms Work

When you submit a form, data is sent from your
browser to the server in name=value pairs

https://www.google.com/search?q=cthulhu+rlyeh

q is the name

cthulhu+rlyeh is the value

1. User fills in form & presses Submit
2. Name/value pairs sent to server
3. Server processes submitted info
4. Server creates a results page for user to see (optional)

Definitions

Label identifies the form field

Form field is made up of one or more form controls
that have the same value in the name attribute

General
Form Attributes

name

value

id

size

disabled

type

name="tentacle_number"

name identifies the form field

Commonly the same as your database’s column/
attribute

Each field has its own unique value for name

Found in <button>, <fieldset>, <form>, <input>,
<select>, & <textarea>

value="Cthulhu"

value provides data that gets submitted with the form

Note that values can also be entered by the user (e.g., in
a text box)

A value is submitted for every field, even if it is null

Found in <button>, <option>, & <input>

id="tentacle_number"

id used by <label> to target the field

More later when we get to <label>

Also used with JavaScript

Very common to use same value for name & id

Global attribute, so found in every element

size="40"

size is deprecated—use CSS instead

Found in <input> & <select>

disabled

Disables user’s ability to interact with the form control

Browsers usually gray it out

Found in <button>, <fieldset>, <input>, <option>,
<select>, & <textarea>

type="button|checkbox|file|hidden|image|
password|radio|reset|submit|text"

For <button> & <input>, type determines which kind
of form control to display

Default value is text

color month time

date number url

datetime range week

datetime-local search

email tel

HTML5 introduces several new values for type

Form
Containers

<form>

<fieldset>

<legend>

<label>

<form> … </form>

Contains interactive form controls

<form action="http://www.miskatonic-
expedition.com/apply.php" method="get"
id="subscription">

action: URL for a program that receives form data &
processes it

method: how form is sent (2 methods: get & post)

action & method were formerly needed, but JavaScript
increasingly handles data submissions

method="get"

Values from form are added to the end of the URL
specified in the action attribute

https://www.google.com/search?q=cthulhu+rlyeh

Good for:
» Short forms (like search)
» Retrieving data from a database & not adding or deleting

If method is not specified, get is used

method="post"

Values from form are sent in HTTP headers

Good for:
» Allowing users to upload files (required)
» Long forms
» Sensitive data, like login forms
» Adding data to, or deleting data from, a database

For testing & learning, you can use a mailto for the
action

<form method="post"
action="mailto:you@domain.com?
subject=Form_Test" enctype="text/plain">

Completely insecure, so use with care!

<fieldset> … </fieldset>

Group related form fields together

Border can be adjusted with CSS

<legend> … </legend>

Caption for grouped form fields that identifies their
purpose

Always goes at top of <fieldset>

<label> … </label>

Caption for specific form control

Can be placed in 2 ways

1. Using the for attribute
2. Placing form control inside <label>

The for attribute’s value must match the form control’s
id

The easier method is to place the form control inside
<label>

The problem now is that if you style <label>, it affects
the form control too

Big advantage of label: clickable area includes the
label as well as the form control

Good for usability & accessibility

Label placement is important for usability

General rules of thumb

Above or to the left
» <input>
» <textarea>
» <select>

To the right
» <input type="checkbox">
» <input type="radio">

Field labels on top for mobile

Field labels on left for desktop

Basic Form
Controls

<textarea> & <input type="text">

<input type="password">

<input type="radio"> & <input type="checkbox">

<select> & <option>

<input type="file">

<button type="submit"> & <button type="reset">

<input type="hidden">

Text

<textarea> & <input type="text">

<input type="password">

<textarea> … </textarea>

Text area for multiple lines of text, like messages &
comments

cols & rows attributes are deprecated—use CSS instead

Some browsers (like Safari & Firefox) allow users to
resize <textarea>s manually

You can allow (or disallow—but don’t) this behavior
with the resize property

Resizing handle
appears by default

resize

CSS property to control an element’s resizability

Values
» both: user can resize both horizontally & vertically

(default)
» horizontal: user can resize horizontally
» vertical: user can resize vertically
» none: user cannot resize ← Do not use this on
<textarea>!

Labeling <textarea>

1. text between <textarea> & </textarea>
2. <label>
3. placeholder attribute

If you put text between <textarea> & </textarea>, it
appears in the <form> element & is submitted unless
users delete it

Users will forget

Form labels should be used

Only remove them if you have a very good reason

The placeholder attribute places gray text in the text
area

Gray text…

» disappears automatically when a user clicks in the
<textarea> & types

» reappears if a user clicks out of the <textarea>
without filling anything in

Remember, though: placeholder is a placeholder, not
a label

The HTML5-only placeholder attribute works well
only with really short forms

Using it as a label removes the user’s ability to verify
their answers because they cannot see the labels

“The placeholder attribute should not be used as a
replacement for a label. … Use of the placeholder
attribute as a replacement for a label can reduce the
accessibility and usability of the control for a range of
users including older users and users with cognitive,
mobility, fine motor skill or vision impairments.”
—W3C HTML 5.1 Editor’s Draft, March 23, 2015

resize — 4 4 5 — —

placeholder 10 5 4 4 2.1-3.0,
4.3 3.2

<input type="text">

Text input for single lines of text, like names, cities, &
email addresses

maxlength: maximum number of characters users can
enter (if absent, no limits)

minlength: minimum number of characters users can
enter (use with caution!)

<input type="password">

Text input with content masked by •

This is not secure by default! Data is not sent encrypted
to the server unless you use HTTPS

maxlength: maximum number of characters users can
enter (if absent, no limits)

Choices

<input type="radio"> & <input type="checkbox">

<select> & <option>

<input type="radio">

Radio buttons that allow users to select one option only

Be careful—there’s no way for users to unselect a radio
button

Multiple radio buttons make up a form field, & all radio
buttons in the same field must share the same value for
the name attribute

<input type="checkbox">

Checkboxes that allow users to select—& unselect—one
or more options

Multiple checkboxes make up a form field, & all
checkboxes in the same field must share the same value
for the name attribute

<select> … </select>

Select list (AKA drop-down menu) that allows users to
select one option from a list

<option> … </option>

Provides a specific choice for users inside <select>

selected: if set, option is initially selected (so it can
only be used on one <option>)

Select lists are similar to radio buttons in that users can
only make 1 choice

If users need to see all options at the same time, radio
buttons are better

If you have a very long list of options (such as a list of
states or countries), select lists are better

<select name="zombies" size="5" multiple>

Multi-select lists allow users to select multiple options
from a select list

Don’t use this form control, as it’s very confusing for users

size: number of options to show at once (turns select list
into multi-select list)

multiple: if set, allows users to select multiple options
(Command on OS X & Ctrl on Windows & Linux)

Uploads

<input type="file">

File select: choose file on your computer to upload to a
server

Requires method="post" in <form> to upload files

Difficult to style with CSS, so don’t even try

Note in CodePen how my CSS is ignored

<input type="file" name="images" multiple>

Upload multiple files (new in HTML5!)

You can also use other technologies to upload multiple
files: e.g., Flash, PHP, JavaScript

Submission

<button type="submit"> & <button type="reset">

<input type="hidden">

<button type="submit">

Submits form to a server

Similar to <input type="submit">, but <button> is
better because…

» Much easier to style
» Can add inner HTML content (e.g., <i>, ,)
» Can use ::after & ::before pseudo-elements

The Submit button goes on the right

In fact, it’s really the only button you need

Multi-page forms aren’t very usable & users don’t really
like them

Actually, try to get all your buttons in the correct order

<button type="reset">

Restores form to its original values

Do not use this except for testing!

Do not use this on live forms!

Similar to <input type="reset">, but <button> is
better, as explained with <button type="submit">

If you do use a Reset button (& you should not), do not
make it look like a Submit button

<input type="hidden">

Fields invisible to users, but used by developers to add
hidden values to forms

Mobility

On mobile devices, users often prefer something else
besides the form controls that work well on non-mobile
computers

Instead of checkboxes…

Switch

» Lets user turn option on
or off

» Choice between 2
mutually exclusive
options

» Can also replace radio
buttons (2 choices, 1 pre-
selected) & select lists
(same)

Instead of radio buttons…

Segmented control or
radio group

» Horizontal group of
multiple segments that
are closely related but
mutually exclusive

» Each segment acts as a
discrete button

Instead of select lists…

Picker

» Mobile equivalent of a
select list

» Sometimes exactly what
you need

» Think about whether you
should really use it or
not

Stepper

» Increases or decreases
value by a constant
amount

» Good for making small
adjustments

}

Buttons

» Expose options that
would otherwise be
hidden in a select list

» Selecting becomes a
single tap instead of a
multiples taps

Accessibility

For maximum accessibility:

» Use fieldsets
» Don’t rearrange the order of fields using CSS; instead,

let the order on screen follow the order in HTML

Tips

Custom form controls

Why custom form controls?

Since form elements are replaced, they all look different
depending on the OS & the browser

In the past, Jans used to give up trying to style form
controls

Now, we have a standard way to tell the rendering
engine not to use a replaced element & instead style the
control using the standard box model

<input type="radio">

input[type="radio"] {
 appearance: none;
 …
}

Clearly indicate what is required

Which of these 4 fields
are required? All of them?

By the way: labels on
the top and bottom

are confusing

Which of these 4 fields
are required? All of them?

By the way: labels on
the top and bottom

are confusing

Even today, HTML forms lack 2 things:

» Validation
» Business logic

Validation

How do developers ensure that a user actually entered
an email address?

Or a telephone number?

22 123 45 67 0704 123 4567

8.812.234-56-78 +254,700 123456

(11) 1234-5678 (091) 1234567

06 12345678 744 21 1234

(030) 12345678 010-12345678

HTML5 includes some validation, but it’s not very
robust

Still have to rely on server-side programming

Business logic

HTML forms don’t include good mechanisms to match
business logic

Thank you!

scott@granneman.com
www.granneman.com
ChainsawOnATireSwing.com
@scottgranneman

jans@websanity.com
websanity.com

Forms
Collecting Information in a Usable Way

© 2013 R. Scott Granneman 
Last updated 2018-08-27 

You are free to use this work, with certain restrictions.  
For full licensing information, please see the last slide/page.

R. Scott Granneman r Jans Carton

1.4

Changelog

2018-08-27 1.4: Created a new Mobility section with
counter-examples to select lists, radio buttons, &
checkboxes; added Custom Form Controls; changed
theme to Granneman 1.4; fixed minor formatting issues
2015-03-31 1.3: Changed “grey” (UK spelling) to
“gray” (US spelling); made it clearer that <textarea>
labels should almost always be used; added quote from
W3C re: placeholder != substitute for label

Changelog

2014-11-22 1.2: Split validation slide into 2; added
slide on international telephone numbers; added slide
combining <label> with placeholder attribute; added
multiple attribute to Uploads
2014-08-03 1.1.1: Fixed type values; added details on
placeholder; compatibility chart for resize &
placeholder

Licensing of this work

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
 

To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

You are free to:

» Share — copy and redistribute the material in any medium or format
» Adapt — remix, transform, and build upon the material for any purpose, even commercially

Under the following terms:

Attribution. You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use. Give credit to:

Scott Granneman • www.granneman.com • scott@granneman.com

Share Alike. If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

No additional restrictions. You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

Questions? Email scott@granneman.com

